Датчик уровня жидкости «Мерадат-М10ДУЖ1»

Назначение и технические характеристики.

Датчик уровня жидкости «Мерадат-М10ДУЖ1» предназначен для определения порогового уровня жидкости в резервуарах. Принцип действия прибора построен на измерении электропроводности жидкости.

Приборы предназначены ДЛЯ построения автоматических автоматизированных систем измерения, контроля управления производственными процессами, технологическими **ЛИНИЯМИ** агрегатами, и выполнены в соответствии с общими техническими ГОСТ 12997-84 на изделия государственной системы промышленных приборов и средств автоматизации (ГСП).

Прибор подключается к датчикам, реагирующим на изменение емкости или проводимости. Микропроцессорный прибор, регистрирует эти изменения и позволяет подстраивать датчики к конкретным условиям эксплуатации.

Устройство прибора.

Электронный блок имеет в своем составе:

1. Два входа для датчиков (D1 – нижний уровень, D2 – верхний представляет собой датчик Каждый два изолированных от корпуса резервуара, которые замыкаются через жидкость. Сопротивление жидкости между контактами должно быть в диапазоне от 0 до 200 кОм. Настройка прибора электронная. Для того чтобы задать нужный порог срабатывания контакты каждого из датчиков необходимо погрузить в рабочую жидкость и нажать на блоке соответствующую кнопку («Уст. D1» или «Уст. D2»). Удерживать её не настройке учитывается, При секунды. ЧТО сопротивление менее поверхности из-за окисления контактов датчика изменения проводимости жидкости может со временем увеличиться (~на 5кОм). В случае больших изменений необходимо произвести повторную калибровку датчиков. Рекомендуется, в первое время, следить за срабатыванием датчика.

- 2. Выходы электронного блока:
- Релейный (до 10А). Можно подключить как НЗ (нормально замкнутые), так и НР (нормально разомкнутые) контакты.
- Симисторный (1A). Может быть использован для управления более мощным симистором, либо для управления обмоткой пускателя.
- RS485 для связи с компьютером (при наличии в приборе). По запросу от ЭВМ передает состояние, в котором находятся оба выхода прибора.

Работа прибора.

Прибор предназначен, например, для поддержания уровня жидкости в ёмкости в заданных пределах. Когда оба датчика «сухие», реле включает двигатель нагнетающего насоса. По заполнении ёмкости (оба датчика «мокрые») реле отключается. Датчики также могут работать независимо друг от друга.

Исполнение по конструкции, прочности и устойчивости к внешним воздействующим факторам.

Прибор предназначен для щитового размещения согласно ГОСТ 5944-91. Прибор по устойчивости и прочности к воздействию температуры и влаги соответствуют группе исполнения В1 по ГОСТ 12997-84 для эксплуатации в закрытых отапливаемых или охлаждаемых и вентилируемых производственных помещениях, рабочий диапазон температур + 5°С... + 45°С, влажность до 75% при 30°С.

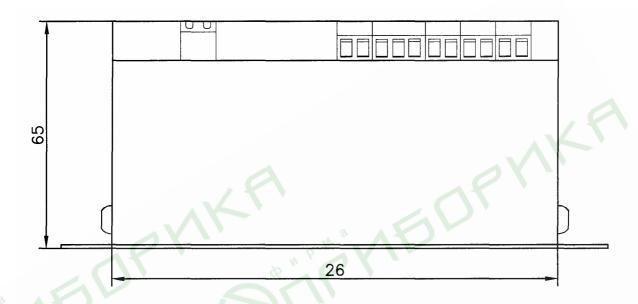
Минимально допускаемое электрическое сопротивление изоляции между отдельными электрическими цепями прибора и между этими цепями и корпусом, в соответствии с ГОСТ 12997 должно быть не менее 20МОм в нормальных условиях, 5МОм при верхнем значении рабочей температуры (45°С) и 1МОм при верхнем значении относительной влажности (75%.).

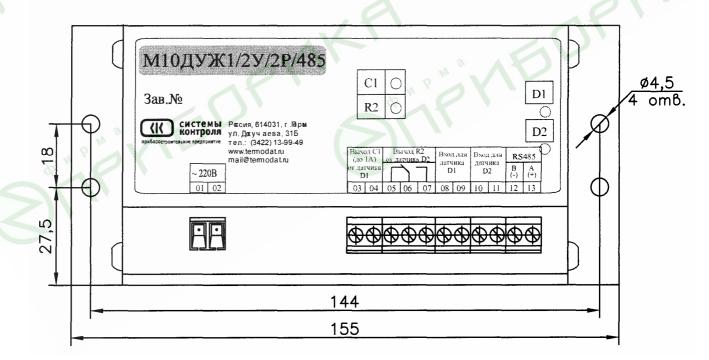
Электрическая изоляция в нормальных условиях выдерживает в течение одной минуты действие напряжения переменного тока синусоидальной формы частотой 50Гц с амплитудой 500В между цепью питания и корпусом; между выходными цепями реле и цепью питания, а также между этими цепями и корпусом.

Требования по безопасности соответствуют ГОСТ 12.2.007.0-75 и ГОСТ 12997.

Габаритные размеры прибора приведены в приложении.

Прибор не содержит драгоценных металлов и вредных веществ, требующих специальных мер по утилизации.


Другие характеристики.


Питание ~ 220В переменного тока, 50±1 Гц.

Требования по безопасности соответствуют ГОСТ 12.2.007.0-75 и ГОСТ 12997.

Потребляемая мощность - не более 14 Вт.

Габаритные размеры прибора

